文章预览
点个 蓝字 关注我们 在RAG应用(包括GraphRAG)中,领域知识的导入与索引是后续增强生成的基础。一个常见的问题是,当领域知识发生更新与变化时,如何用最简洁、快速、低成本的方式更新对应的向量或知识图谱索引?让我们来探讨这个问题。 01 需求 一般来说企业的信息系统中都可能有较完善的知识库维护与管理应用,但是如何让变化的知识能够同步更新到RAG应用中则不一样,知识进入到RAG应用通常需要经过拆分(split)、嵌入(embedding)、向量索引(vectorindex)等步骤: 因此当更新发生时,就需要识别出输入的知识文档变化,进而将合适的策略应用到不同的知识块上,比如忽略、新增、删除或者更新。 在实际应用中有两种不同级别的增量更新策略: 一种是文档(Document)级别的简单更新策略。 即在导入知识文档时识别出新增或更新的文档,
………………………………