文章预览
前言 本文 受到 SAM 在下游任务中泛化问题的启发,提出了一种与任务无关且无需源数据的解决方案,通过自训练来适应 SAM。 Pytorch训练营,花两个星期彻底掌握代码实现 CV各大方向专栏与各个部署框架最全教程整理 CV全栈指导班、基础入门班、论文指导班 全面上线!! 来源: 计算机视觉研究 院 仅用于学术分享,若侵权请联系删除 论文地址:https://arxiv.org/pdf/2312.03502.pdf 项目地址:https://github.com/Zhang-Haojie/WeSAM 论文标题:Improving the Generalization of Segmentation Foundation Model under Distribution Shift via Weakly Supervised Adaptation 引言 大语言模型(LLMs)的成功激发了计算机视觉领域探索分割基础模型的兴趣。这些基础分割模型通常通过 Prompt Engineer 来进行 zero/few 图像分割。其中, Segment Anything Model (SAM)是最先进的图像分割基础模型。 图 SAM 在多个下游任务上
………………………………