专栏名称: AINLP
关注AI、NLP相关技术,关注算法研发职位和课程;回复"文章"获取历史信息;双语聊天机器人"无名";中英翻译请输入:翻译 翻译内容;自动对联,请输入:上联 上联内容;调戏夸夸聊天机器人,请求夸、求赞;查询相似词,请输入: 相似词 词条
今天看啥  ›  专栏  ›  AINLP

Alignment下一站:合成数据

AINLP  · 公众号  ·  · 2024-08-15 22:09

文章预览

大模型训练中,数据质量已经是所有人的共识了。在23年开始接触Alignment之后,我一直是人工标注流派,深信InstructGPT [1] 中所描述的,先train好标注员,再train好模型。那时候各个模型的质量也都一般,合成的数据一眼就能挑到一堆毛病。 事情的转折要从sora开始,了解到那么好的效果居然大量应用了合成数据之后,我开始意识到自己还停留在上一个时代。首先大模型的能力是一直在提升的,去年还被狂吹的GPT3.5现在已经被甩了几条街了,大模型在很多任务上都可以达到人类标注员的水平;其次在大模型时代,应该多去发掘模型的价值,学会和AI协作,而不是上来就先验地觉得模型生成的数据质量不过关。 随着业内模型能力和使用熟练度的整体提升,今年数据合成的工作一波又一波,数据合成的前景非常客观: 合成Prompt:GPT系列相比竞品的一个显著 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览