专栏名称: 包包算法笔记
数据挖掘、机器学习、深度学习、Kaggle竞赛分享与交流。
今天看啥  ›  专栏  ›  包包算法笔记

一文讲明白大模型分布式逻辑(从GPU通信原语到Megatron、Deepspeed)

包包算法笔记  · 公众号  ·  · 2024-09-28 19:18

文章预览

知乎:然荻 链接:https://zhuanlan.zhihu.com/p/721941928 1. 背景介绍 如果你拿到了两台8卡A100的机器(做梦),你的导师让你学习部署并且训练不同尺寸的大模型,并且写一个说明文档。你意识到,你最需要学习的就是关于分布式训练的知识,因为你可是第一次接触这么多卡,但你并不想深入地死磕那些看起来就头大的底层原理,你只想要不求甚解地理解分布式的基本运行逻辑和具体的实现方法。那么,我来帮你梳理关于大模型的分布式训练需要了解的知识。 1.1 分布式定义 分布式就是把模型或者数据分散分布到不同的GPU去。为什么要分散到不同的GPU,当然是因为一个GPU的显存太小了(不管从为了训练加速还是模型太大塞不进去这两个角度来看,本质就是单个GPU显存不够)。为什么GPU显存这么小,是因为GPU对带宽的要求很高,能达到这样高带宽的内存都很 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览