文章预览
本文讲解机器学习的降维部分,包括SVD(奇异值分解)。 1.1 降维概述 1.1.1 维数灾难 维数灾难(Curse of Dimensionality):通常是指在涉及到向量的计算的问题中,随着维数的增加,计算量呈指数倍增长的一种现象。 在很多机器学习问题中,训练集中的每条数据经常伴随着上千、甚至上万个特征。要处理这所有的特征的话,不仅会让训练非常缓慢,还会极大增加搜寻良好解决方案的困难。这个问题就是我们常说的维数灾难。 图1-1 维数增加,计算量呈指数增长 维数灾难涉及数字分析、抽样、组合、机器学习、数据挖掘和数据库等诸多领域。在机器学习的建模过程中,通常指的是随着特征数量的增多,计算量会变得很大,如特征达到上亿维的话,在进行计算的时候是算不出来的。有的时候,维度太大也会导致机器学习性能的下降,并不是特征维度越大越好,
………………………………