专栏名称: 深度学习与NLP
专注深度学习、NLP相关技术、资讯,追求纯粹的技术,享受学习、分享的快乐。
今天看啥  ›  专栏  ›  深度学习与NLP

训练VLM(视觉语言模型)的经验

深度学习与NLP  · 公众号  ·  · 2024-10-21 00:00
    

文章预览

知乎:lym 链接:https://zhuanlan.zhihu.com/p/890327005 如果可以用prompt解决,尽量用prompt解决,因为训练(精调)的模型往往通用能力会下降,训练和长期部署成本都比较高,这个成本也包括时间成本。 基于prompt确实不行(情况包括格式输出不稳定、格式输出基本不对、任务不完全会、任务完全不会等情况,难度逐渐加大),选择上SFT微调。 业务场景基本用不到强化学习,强化解决的是最后一公里的问题,可以理解为有两种非常接近的输出(这两种输出都非常接近目标输出,此时已经解决了90%的问题),强化学习会对相同的输入,打压其中一种不希望的输出,同时增强另一种更接近目标的希望的输出(从DPO loss就可以看出)。强化是用来应对细微输出差异的,并且业务场景优先用DPO,DPO只需要pair对数据,更好构造。PPO的reward model几乎没有开源的,需要的 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览