文章预览
DRUG AI 今天为大家介绍的是来自Kumar Shubham团队的一篇论文。癌症是全球主要的死亡原因之一,由于基因组的变化在患者中表现出异质性。为了推进个性化治疗策略的研究,实验室中通常会实验确定各种药物对从癌症中提取的细胞(‘细胞系’)的效果。然而,由于生物和环境差异,细胞系和人类之间的基因组数据和药物反应分布存在差异。此外,尽管许多癌症患者的基因组资料容易获得,但相应的药物反应数据稀缺,这限制了训练能够有效预测患者药物反应的机器学习模型的能力。最近的癌症药物反应预测方法主要遵循无监督域不变表示学习的范式,然后进行下游的药物反应分类。由于患者对药物反应的异质性和药物反应数据的有限性,在两个阶段引入监督是具有挑战性的。本文通过在第一阶段引入一种新颖的表示学习方法和在第二阶段引入弱监
………………………………