定期分享机器学习领域原创文章,公众号内容涵盖了机器学习算法和python数据分析等文章,目前监督学习方法的文章应有尽有,非监督学习的原创文章一直在更新,欢迎机器学习爱好者和从业者的加入,互相学习,共同成长。
今天看啥  ›  专栏  ›  机器学习算法那些事

Tokenization不存在了?Meta最新研究,无需Tokenizer的架构来了

机器学习算法那些事  · 公众号  ·  · 2024-12-22 10:32
    

文章预览

转载自 | 机器之心 编辑 | 小舟、陈陈 BLT 在许多基准测试中超越了基于 token 的架构。 最近几天,来自 Meta 、芝加哥大学等机构的合著论文《 Byte Latent Transformer: Patches Scale Better Than Tokens 》火了,在 Hacker News 上受到广泛讨论。 有人表示,非常期待这项研究取得成功,这样就可以和 tokenizer 拜拜了! 还有人担心的表示,「现在 tokenization 是大多数模型的基础,这项研究被采用的可能性究竟有多大?」 总结而言,该研究提出了一种新的 LLM 思想。传统的语言模型依赖于 tokenizer 来预处理数据,但 tokenization 有其固有的局限性,包括固定的词汇表、处理多语言或噪声数据的效率低下,以及由压缩启发式方法引入的偏见。 该研究提出字节潜在 Transformer(Byte Latent Transformer,简称 BLT)挑战了这种常规做法。BLT 通过直接建模原始字节流,将它们根据熵动态分组 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览