文章预览
点击下方 卡片 ,关注“ 自动驾驶之心 ”公众号 戳我-> 领取 自动驾驶近15个 方向 学习 路线 >> 点击进入→ 自动驾驶之心 『 三维重建 』 技术交流群 编辑 | 自动驾驶之心 首个研究如何攻击3DGS计算复杂性的工作 3DGS由Kerbl等人在2023年提出,迅速改变了3D视觉领域,获得了压倒性的欢迎。与NeRF不同,3DGS并非由神经网络驱动,而是通过学习一组3D高斯来捕捉场景,并使用光栅化同时渲染多个对象。这使得3DGS在渲染速度、照片逼真度和可解释性方面具有显著优势,成为该领域的游戏规则改变者。 高斯点云的一个有趣特性是其模型复杂度的灵活性 。不同于NeRF或其他基于神经网络的算法,这些算法的计算复杂性通常由网络超参数预先确定并保持固定,3DGS可以根据输入数据动态调整其复杂性。在3DGS的训练过程中,可学习参数的数量,即3D高斯的数量,随
………………………………