文章预览
图1 论文截图 植物树叶可以通过光合作用,将二氧化碳(CO 2 )固定为糖或其他有机物。通过借鉴自然光合作用,基于半导体材料和非光合生物的人工生物光合作用体系也可以实现天然光合作用相同的功能。这种半导体-生物混合人工光合作用系统,将半导体强大的光收集能力与生物细胞的高效催化功能相结合,为生物合成提供了一种新的途径。利用该人工光合作用系统,可以实现在自然光照及常温常压的条件下,实现二氧化碳的高效固定和高附加值产物的高效合成。 通常,半导体都采用纳米颗粒或有机小分子的形态,通过粘附在细菌细胞表面或进入细菌细胞内部,将吸收到的光能传递给细菌,有效提高体系的光利用效率。然而这种基于纳米颗粒或有机分子的体系吸光能力有限,且难以回收,其可持续应用性受到很大限制。共轭聚合物半导体具有
………………………………