文章预览
↑ 点击 蓝字 关注极市平台 作者丨 新智元 来源丨新智元 编辑丨极市平台 极市导读 通用机器人模型,如何解决异构性难题?来自MIT、Meta FAIR团队全新提出异构预训练Transformer(HPT),不用从头训练,即可破解。 >> 加入极市CV技术交流群,走在计算机视觉的最前沿 通用机器人模型,目前最大的障碍便是「异构性」。 也就是说,必须收集全方位——每个机器人、任务和环境的特定数据,而且学习后的策略还不能泛化到这些特定设置之外。 由此,AI大神何恺明带队的MIT、Meta FAIR团队,提出了异构预训练Transformer(HPT)模型。 即预训练一个大型、可共享的神经网络主干,就能学习与任务和机器人形态无关的共享表示。 简单讲,就是在你的策略模型中间放置一个可扩展的Transformer,不用从头开始训练! 论文地址: https://arxiv.org/pdf/2409.20537 研究人员将
………………………………