文章预览
转自 | 尤而小屋 本文是PyTorch常用代码段合集,涵盖基本配置、张量处理、模型定义与操作、数据处理、模型训练与测试等5个方面,还给出了多个值得注意的Tips,内容非常全面。 PyTorch最好的资料是官方文档。本文是PyTorch常用代码段,在参考资料的基础上做了一些修补,方便使用时查阅。 基本配置 导入包和版本查询 import torch import torch.nn as nn import torchvision print(torch.__version__) print(torch.version.cuda) print(torch.backends.cudnn.version()) print(torch.cuda.get_device_name( 0 )) 可复现性 在硬件设备(CPU、GPU)不同时,完全的可复现性无法保证,即使随机种子相同。但是,在同一个设备上,应该保证可复现性。具体做法是,在程序开始的时候固定torch的随机种子,同时也把numpy的随机种子固定。 np.random.seed( 0 ) torch.manual_seed( 0 ) torch.cuda.manual_seed_all( 0 ) t
………………………………