文章预览
本文回顾了通用大模型的发展历程,梳理关键技术节点,从早期基于规则的系统和传统机器学习模型,到深度学习的崛起,再到Transformer架构,以及GPT系列及国内外通用大模型的进展。尽管GLMs在多个领域取得了显著进展,但其发展也面临诸多挑战,包括计算资源需求、数据偏见与伦理问题及模型的解释性与透明性。分析了这些挑战,并探讨了GLMs未来发展的5个关键方向:模型优化、多模态学习、具情感大模型、数据与知识双驱动以及伦理与社会影响。通过这些策略,通用大模型有望在未来实现更广泛和深入的应用,推动人工智能技术的持续进步。 随着人工智能技术的飞速发展,通用大模型(general large models,GLMs)已经成为人工智能领域的重要研究方向,通常具备以下特点。 1)大规模。 通用大模型通常拥有大量的参数,从几十亿至上千亿参数不等
………………………………