文章预览
点击蓝字 关注我们 关注并星标 从此不迷路 计算机视觉研究院 公众号ID | 计算机视觉研究院 学习群 | 扫码在主页获取加入方式 计算机视觉研究院专栏 Column of Computer Vision Institute 外观缺陷不仅影响了建筑的美观,也影响了其功能。此外,它们还可能危及行人、居住者和财产。我们基础到目前很多老破小社区建筑都有该现象,现在迫切需要AI实时监测,提高居民安全环境。 01 前景概要 现有的基于深度学习的方法在识别速度和模型复杂性方面面临一些挑战。为了保证建筑外墙缺陷检测的准确性和速度,我们研究了了一种改进的YOLOv7方法BFD-YOLO。首先,将YOLOv7中原有的ELAN模块替换为轻量级的MobileOne模块,以减少参数数量并提高推理速度。其次,在模型中加入了坐标注意力模块,增强了特征提取能力。接下来,使用SCYLLA-IoU来加快收敛速度并增加模型的
………………………………