文章预览
写在前面 & 笔者的个人理解 本文提出了HE-Drive:首个模仿人类驾驶为核心的端到端自动驾驶系统,旨在生成同时具备时间一致性和舒适性的轨迹。近期研究表明,基于模仿学习的规划器和基于学习的轨迹评分器能够有效生成并选择高度模仿专家演示的准确轨迹。然而这类轨迹规划和评分器面临生成时间不一致且不舒适的轨迹的困境。为了解决上述问题,HE-Drive首先通过稀疏感知提取关键的三维空间表示,这些表示随后作为条件输入,传递给基于条件去噪扩散概率模型(DDPM)的运动规划器,生成具备时间一致性的多模态轨迹。随后,基于视觉语言模型(VLM)引导的轨迹评分器从这些候选轨迹中选择最舒适的轨迹来控制车辆,确保类人的端到端驾驶体验。实验结果表明,HE-Drive在nuScenes和OpenScene数据集上实现了SOTA性能(即比VAD减少了71%的平均碰撞率)
………………………………