专栏名称: AINLP
关注AI、NLP相关技术,关注算法研发职位和课程;回复"文章"获取历史信息;双语聊天机器人"无名";中英翻译请输入:翻译 翻译内容;自动对联,请输入:上联 上联内容;调戏夸夸聊天机器人,请求夸、求赞;查询相似词,请输入: 相似词 词条
今天看啥  ›  专栏  ›  AINLP

MIT最新力作:用GPT-3.5解决时间序列异常检测问题

AINLP  · 公众号  ·  · 2024-05-28 10:10
    

文章预览

今天给大家介绍一篇MIT上周发表的文章,使用GPT-3.5-turbo解决时间序列异常检测问题,初步验证了LLM在时间序列异常检测中的有效性。整个过程没有进行finetune,直接使用GPT-3.5-turbo进行异常检测,文中的核心是如何将时间序列转换成GPT-3.5-turbo可识别的输入,以及如何设计prompt或者pipeline让LLM解决异常检测任务。下面给大家详细介绍一下这篇工作。 论文标题 :Large language models can be zero-shot anomaly detectors for time series? 下载地址 : https://arxiv.org/pdf/2405.14755v1 1 整体介绍 MIT的这篇文章,基于LLM(如GPT-3.5-turbo、MISTRAL等)进行时间序列异常检测。核心在于pipeline的设计,主要分为两个部分。 时序数据处理 :通过离散化等方法,将原始的时间序列转换成LLM可理解的输入; 异常检测Pipeline :设计了两种基于LLM的异常检测pipeline,一种是基于prompt的方法,问大模型 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览