专栏名称: 小白学视觉
本公众号主要介绍机器视觉基础知识和新闻,以及在学习机器视觉时遇到的各种纠结和坑的心路历程。
今天看啥  ›  专栏  ›  小白学视觉

GANs的优化函数与完整损失函数计算

小白学视觉  · 公众号  ·  · 2024-10-16 10:46

文章预览

点击上方 “ 小白学视觉 ”,选择加" 星标 "或“ 置顶 ” 重磅干货,第一时间送达 前言   本文详细解释了GAN优化函数中的最小最大博弈和总损失函数是如何得到的。将介绍原始GAN中优化函数的含义和推理,以及它与模型的总损失函数的区别,这对于理解Generative Adversarial Nets是非常重要的。 转载自  DeepHub IMBA 仅用于学术分享,若侵权请联系删除 生成对抗网络(GANs)近年来在人工智能领域,尤其是计算机视觉领域非常受欢迎。随着论文“Generative Adversarial Nets” [1]的引入,这种强大生成策略出现了,许多研究和研究项目从那时起兴起并发展成了新的应用,我们现在看到的最新的DALL-E 2[2]或GLIDE [ 3](这两个应用都是使用扩散模型开发的,这是生成模型的最新范式。然而但是GAN今天仍然是一个广泛使用的模型) GANs简介 生成对抗网络(Generative Adversarial Networks) ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览