专栏名称: 机器之心
专业的人工智能媒体和产业服务平台
今天看啥  ›  专栏  ›  机器之心

HuggingFace工程师亲授:如何在Transformer中实现最好的位置编码

机器之心  · 公众号  · AI  · 2024-11-27 12:33
    

文章预览

机器之心报道 编辑:蛋酱 一个有效的复杂系统总是从一个有效的简单系统演化而来的。——John Gall 在 Transformer 模型中,位置编码(Positional Encoding) 被用来表示输入序列中的单词位置。与隐式包含顺序信息的 RNN 和 CNN 不同,Transformer 的架构中没有内置处理序列顺序的机制,需要通过位置编码显式地为模型提供序列中单词的位置信息,以更好地学习序列关系。 位置编码通常通过数学函数生成,目的是为每个位置生成一个独特的向量。这些向量在嵌入空间中具有特定的性质,比如周期性和连续性。 在最近的一篇文章中,HuggingFace 机器学习工程师 Christopher Fleetwood 介绍了逐步发现 Transformer 模型中最先进位置编码的方法。为此,作者会讲述如何不断改进位置编码方法,最终形成旋转位置编码 (RoPE),并在最新的 LLama 3.2 版本和大多数现代 Transformer 中使用 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览