文章预览
点击 名片 关注并星标 #TSer # 扫下方二维码 ,加入时序人学术星球 参与算法讨论,获取前沿资料 ( 180+ 篇专栏笔记,已有 180+ 同学加入学习) 用机器学习做时间序列异常检测 (TAD) 受到有缺陷的评估指标、不一致的基准测试、缺乏模型选择适当性论证的困扰。 来自德国奔驰和卡尔斯鲁厄理工学院的研究者对 TAD 的现状进行了批判性分析,揭示了当前研究的误导性轨迹。研究者主张将重点从单纯追求新颖的模型设计转向改进基准实践,创建非琐碎数据集,并根据更简单的基线对复杂方法的有效性进行评估。 研究者的研究结果表明,需要探索和发展简单和可解释的 TAD 方法。在目前先进的基于深度学习的模型中,模型复杂性的增加几乎没有提供任何改进。 【论文标题】 Position: Quo Vadis, Unsupervised Time Series Anomaly Detection? 【论文地址】 https://arxiv.org/abs/
………………………………