文章预览
点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入! 点击 阅读原文 观看作者直播讲解回放 ! 作者简介 孙浩鑫 ,复旦大学博士生,主要研究方向为大规模图上快速算法设计。 概述 森林矩阵在网络科学、观点动力学和机器学习相关应用中扮演着至关重要的角色,深刻刻画了网络的结构信息与内在联系。在本文中,我们研究了在演化中的图(与静态图相比,更准确地代表了现实世界网络的动态特性)中查询森林矩阵元素的问题。为了应对演化图所带来的独特挑战,我们首先为静态图中森林矩阵元素查询提出了两种近似算法,SFQ和SFQPlus。SFQ采用了森林矩阵的概率解释,而SFQPlus则结合了一种新颖的方差减少技术,我们理论证明了SFQPlus拥有更小的方差,因而可以提供更高的精确度。基于这两种算法,我们进一步设计了两种动态算法,这些算法的
………………………………