文章预览
点击上方 “机器学习研究会” 可以订阅哦 摘要 转自:视觉机器人 论文《FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks》,提出了光流的端到端学习的概念。 质量和速度的巨大提高是由三个主要贡献造成的: 1.我们专注于训练数据,并表明训练期间呈现数据的调度非常重要。 2.我们开发了一种堆叠架构,其包括具有中间光流的第二图像的翘曲。 3.我们通过引入一个专门针对小运动的子网络。 摘要: The FlowNet demonstrated that optical flow estimation can be cast as a learning problem. However, the state of the art with regard to the quality of the flow has still been defined by traditional methods. Particularly on small displacements and real-world data, FlowNet cannot compete with variational methods. In this paper, we advance the conce
………………………………