文章预览
构建更加通用的人工智能,让模型具有更加广泛和通用的认知能力,是当前人工智能领域发展的重要目标。目前流行的大模型路径是基于尺度定律(Scaling Law ) 去构建更大、更深和更宽的神经网络,可称之为“基于外生复杂性”的通用智能实现方法。这一路径面临着计算资源及能源消耗难以为继、可解释性不足等问题。 中国科学院自动化研究所李国齐、徐波研究团队联合清华大学、北京大学等借鉴大脑神经元复杂动力学特性,提出了“基于内生复杂性”的类脑神经元模型构建方法,改善了传统模型通过向外拓展规模带来的计算资源消耗问题,为有效利用神经科学发展人工智能提供了示例。 相关研究论文8月16日在线发表于《 自然·计算科学 》 ( Nature Computational Science ) 。 图1.神经元和神经网络的内生复杂性与外部复杂性 HH神经元模型,全称为Hodg
………………………………