专栏名称: CV技术指南
长期更新:深度学习、计算机视觉相关技术的总结;图像处理相关知识;最新论文;经典论文;论文综述、tensorflow和pytorch等内容总结。涉及领域 :神经网络模型、transformer模型、目标检测、语义分割、目标跟踪、视频理解等。
今天看啥  ›  专栏  ›  CV技术指南

中山大学 & 华为诺亚实验室提出 HiRes-LLaVA 框架,解决切片的高分辨率LVLM引起的输入碎片化问题 !

CV技术指南  · 公众号  ·  · 2024-07-29 19:25

文章预览

前言   为了减少由高分辨率输入引起的训练和计算成本,一个有前景的方向是使用滑动窗口将输入切成均匀的块,每个块与训练有素的视觉编码器的输入大小相匹配。尽管这种切分策略高效,但它导致了原始输入的碎片化,即,在块之间的上下文信息和空间几何的连续性丢失,这不利于跨块上下文感知和位置特定任务的表现。 为了克服这些缺点,作者引入了 HiRes-LLaVA ,这是一个新颖的框架,旨在高效处理任何大小的高分辨率输入,而不改变原始的上下文和几何信息。 Pytorch训练营,花两个星期彻底掌握代码实现 CV各大方向专栏与各个部署框架最全教程整理 CV全栈指导班、基础入门班、论文指导班 全面上线!! 1 Introduction 近期在大型视觉-语言模型(LVLMs)方面的进展显著提高了视觉-语言任务的能力,促进了理解、推理和交互的改进。早期的LVLMs[34; 82 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览