文章预览
学霸数学,让你更优秀! 几何图形中,两条线段乘积关系的构造往往可以借助相似三角形的比例关系去关联 ...... 【模型认识】 1. 如图,在四边形 ABCD 中,点 E 在边 CD 上,连接 AC 、 AE , △ABC~△AED ① 求证: AC·AE=AB·AD ; ②∠BCD 与 ∠CAD 满足的数量关系为 ______ 解: 1. 由 △ABC~△AED 得 ,故 AC·AE=AB·AD 2. ∠BCD+∠CAD=180°, 由相似知 ∠ABC=∠AED, 而 ∠AEC+∠AED=180° ,得 ∠ABC+∠AEC=180° ,于是 ∠BCD+∠BAE=180° ;而 ∠BAC=∠DAE 得 ∠BAE=∠CAD ,故 ∠BAE=∠CAD ,故 ∠BCD+∠CAD=180° 【初步理解】 (2) 如图,在 △ABC 中, ∠BAC=90° , AB=AC ,点 D 在 △ABC 外, AD=AB ,连接 DA 并延长于点 E , AE=1/4 AD ,点 N 在 AC 上, DN 交 AB 于点 M , ∠DNE=∠BAD=45° ,求证: (2) 由 ∠ DAM= ∠ NAE 得 得 AM·AN=AD·AE , AE=1/4 AD , AD=AB=AC ,得 AM·AN= AB·AC ,故 【问题解决】 (3) 如图,在 △ABC 中
………………………………