文章预览
来源:专知 本文 约1000字 ,建议阅读 5 分钟 本论文探索了从感知到控制的多种机器人学习问题。 进入人工智能的第三个时代已有二十年,深度学习的兴起带来了两种看似截然不同的现实。在其中一种现实中,深度强化学习、蛋白质折叠和大语言模型等领域取得了巨大成就。然而,在另一种现实中,深度学习赋予机器人在现实环境中可靠操作的承诺仍未兑现。物体的多样性、分布转变和长尾现象:在实验室之外,现实环境对现代统计学习的数据假设提出了挑战。 尽管此类环境通常被称为“非结构化”,但这种术语掩盖了它们的本质。现实环境并非“非结构化”,而是由于结构的存在而产生:生成观察数据的潜在因果过程。从这个角度看,机器人不仅应依据数据进行推理和学习,还应理解数据生成过程。这些过程可以通过因果关系的语言形式化。因
………………………………