专栏名称: 夕小瑶科技说
这里有自然语言处理、机器学习、算法的入门指导、科普与深度干货,有小夕的回忆与日常,还有最重要的:萌!气!
今天看啥  ›  专栏  ›  夕小瑶科技说

强强联合!当RAG遇到长上下文,滑铁卢大学发布LongRAG,效果领先GPT-4 Turbo 50%

夕小瑶科技说  · 公众号  ·  · 2024-07-04 16:06

文章预览

夕小瑶科技说 原创 作者 | Axe_越 过犹不及 ——《论语·先进》 大学考试时,有些老师允许带备cheet sheet(忘纸条),上面记着关键公式和定义,帮助我们快速作答提高分数。传统的检索增强生成(RAG)方法也类似,试图找出精准的知识片段来辅助大语言模型(LLM)。 但这种方法其实有问题。因为: LLM没有"老师划重点",需要自己在海量信息中寻找答案。 RAG是两步走:先检索,再生成。如果第一步检索就出错,再好的生成也难以弥补。 过分追求精准的知识片段,反而可能限制了模型的发挥空间。 所以, 与其苛求检索结果的精准性,不如给模型提供更丰富的上下文信息,让它自己去理解和提炼关键知识。这样可能效果会更好。 那有没有可能让LLM不要cheet sheet,直接参加“开卷考”呢?随着现在长上下文技术(LongContext)日渐成熟,让LLM干脆带着“书”来回答问题开始成为 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览