专栏名称: 专知
专知,为人工智能从业者服务,提供专业可信的人工智能知识与技术服务,让认知协作更快更好!
今天看啥  ›  专栏  ›  专知

【剑桥大学博士论文】值得信赖的机器学习:从算法透明性到决策支持

专知  · 公众号  ·  · 2024-05-25 01:20
    

文章预览

开发值得决策者信任的机器学习模型对于在实践中使用这些模型至关重要。算法透明性工具,如可解释性和不确定性估计,能够向决策者展示模型的可信度。在本论文中,我们首先探讨了从业者在工业界如何使用可解释性。通过一项访谈研究,我们发现,尽管工程师们越来越多地使用可解释性方法来测试开发过程中的模型行为,但这些方法在外部利益相关者中采用的情况却有限。为此,我们为特定决策环境开发了新颖的算法透明性方法,并通过人类主体实验与真实决策者一起测试这些方法。 我们首先提出DIVINE,一种基于示例的解释方法,它不仅找到对模型参数有影响的训练点,而且这些点在输入空间中具有多样性。我们展示了我们的解释如何提高决策者模拟模型决策边界的能力。接下来,我们讨论反事实潜在不确定性解释(CLUE),这是一种特征 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览