文章预览
MLNLP 社区是国内外知名的机器学习与自然语言处理社区,受众覆盖国内外NLP硕博生、高校老师以及企业研究人员。 社区的愿景 是促进国内外自然语言处理,机器学习学术界、产业界和广大爱好者之间的交流和进步,特别是初学者同学们的进步。 转载自 | PaperWeekly 作者 | 姚林丽@北京大学 研究方向 | 多模态理解 我们组最近的工作 DeCo: Decoupling Token Compression from Semantic Abstraction in Multimodal Large Language Models 比较深入地分析了 Q-former 结构的问题。 论文题目: DeCo: Decoupling Token Compression from Semantic Abstraction in Multimodal Large Language Models 论文链接: https://arxiv.org/abs/2405.20985 先说观点: 1. 训练资源足够的条件下,我们可以在多模态大语言模型中选择 Linear Projector/MLP,作为视觉-文本模态桥接器,即 LLaVA 的路线。Linear Projector 没有视觉信息损失、训练收敛快、表现
………………………………