专栏名称: 自动驾驶之星
自动驾驶之星,是一个以自动驾驶量产交流为主的社区。这里有自动驾驶量产第一线的前沿动态,有一群奋斗在自动驾驶量产第一线的小伙伴在分享他们的量产经历。期待你的加入!希望每个人在这个浪潮中都能成为自动驾驶之星!
今天看啥  ›  专栏  ›  自动驾驶之星

国防科技大学提出混合 BEV-Voxel 表示:自动驾驶中占用预测的快速准确方法 !

自动驾驶之星  · 公众号  ·  · 2024-07-24 06:00

文章预览

自动驾驶之星 点击上方 蓝字 关注 自动驾驶之星 点击下方 卡片 ,关注“ 自动驾驶之星 ” 这里有一群奋斗在自动驾驶 & 座舱量产第一线的小伙伴等你加入 占用预测在自动驾驶(AD)中扮演着至关重要的角色,因为它具有细粒度的几何感知和通用目标识别能力。然而,现有的方法往往会产生较高的计算成本,这与AD的实时需求相矛盾。 为此,作者首先评估了大多数公开可用方法的速度和内存使用情况,旨在将重点从单纯优先考虑准确度转向同时考虑效率。接着,作者确定了一个在实现快速和准确性能方面的核心挑战: 几何与语义之间的强烈耦合 。 为了解决这个问题,作者采取了以下措施: 作者提出了一个几何-语义双分支网络(GSDBN),采用混合的鸟瞰图(BEV)- Voxel 表示。在BEV分支中,引入了BEV Level 的时序融合模块和U-Net编码器以提取密集的 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览