文章预览
DRUG AI 今天为大家介绍的是来自麻省理工学院Klavs F. Jensen教授团队的一篇论文。电化学C-H氧化反应是对碳氢化合物进行官能化的一种可持续路径,但识别合适的底物和优化合成仍然具有挑战性。在这项研究中,作者报告了一种结合机器学习和大语言模型的综合方法,以简化电化学C-H氧化反应的探索过程。利用批量快速筛选电化学平台,作者评估了广泛的反应,最初根据底物的反应性对其进行分类,同时大语言模型从文献数据中进行文本挖掘以增强训练集。由此产生的反应性预测机器学习模型实现了高精度(>90%),并能够对大量商业化分子进行虚拟筛选。为了优化选定底物的反应条件,作者提示大语言模型生成代码以迭代改善产率。这种人工智能协作方法被证明是有效的,能够高效地确定8种类药物物质或中间体的高产率条件。基于化学家给出的自然
………………………………