文章预览
作者: bensenliu 始于数据,但不局限于数据 POINTS: Improving Your Vision-language Model with Affordable Strategies paper link: https://huggingface.co/papers/2409.04828 前言 近来,随着大型语言模型的发展,视觉语言大型模型的能力也在逐步增强,GPT-4[1]、Gemini Pro 1.5[2]和Claude 3[3]等著名的闭源模型成功将 LLM 扩展到视觉语言模型领域。LLaVA[4],InternVL[5]等开源模型也在迅速发展。目前,视觉语言模型领域存在一些关键问题亟待解决:1)闭源模型很少公开关于其架构的详细信息。相比之下,开源模型虽公开了其训练策略,但这些策略的详细消融并没有完全披露。2)在目前的开源工作中,对于预训练阶段,大多都是凭经验添加不同来源的数据集,这使得预训练过程难以得到深入的探索。3)在微调阶段,绝大多数工作关注的重点通常是添加和消融更多的数据集,这样性能会较快触
………………………………