专栏名称: arXiv每日学术速递
跟踪计算机视觉、人工智能、机器学习、NLP、语音识别、量化金融等热门方向学术信息
今天看啥  ›  专栏  ›  arXiv每日学术速递

英伟达&斯坦福打破陈规!Gen-Drive:生成-评估的全新规划范式,直接SOTA!

arXiv每日学术速递  · 公众号  ·  · 2024-10-19 13:20

文章预览

在前面 & 笔者的个人理解 在复杂环境中导航需要自动驾驶代理能够熟练地预测未来场景(比如其他代理的行为),同时做出明智的决策。一般而言,传统的预测性和确定性规划方法通常将预测和规划过程分开,从而将自车与社会环境信息隔离开来,并常常导致不符合社会驾驶规范的行为。尽管目前工业界和学术界已经提出了集成预测和规划框架的算法模型来解决这一问题,但这类算法仍然依赖于确定性规划,这对解决代理行为的不确定性、多模态性和相互作用的动态性提出了挑战。 为了克服上述提到的这些挑战,我们建议在规划任务中采用生成-评估的方法。这个方法的关键是将自车代理集成到社会互动环境中,为整个场景中的所有代理生成一系列可能的结果,并使用学习场景评估器来指导决策过程。同时,我们考虑到生成模型在自动驾驶的仿真 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览