一个有情怀的公众号。机器学习、自然语言处理、算法等知识集中营、期待与你相遇~
今天看啥  ›  专栏  ›  机器学习算法与自然语言处理

腾讯混元、北大发现Scaling law「浪涌现象」,解决学习率调参难题

机器学习算法与自然语言处理  · 公众号  ·  · 2024-06-16 21:12
    

文章预览

MLNLP 社区是国内外知名的机器学习与自然语言处理社区,受众覆盖国内外NLP硕博生、高校老师以及企业研究人员。 社区的愿景 是促进国内外自然语言处理,机器学习学术界、产业界和广大爱好者之间的交流和进步,特别是初学者同学们的进步。 转载自 | 机器之心 过去十年间,基于随机梯度下降(SGD)的深度学习模型在许多领域都取得了极大的成功。与此同时各式各样的 SGD 替代品也如雨后春笋般涌现。在这些众多替代品中,Adam 及其变种最受追捧。无论是 SGD,还是 Adam,亦或是其他优化器,最核心的超参数非 Learning rate 莫属。因此如何调整好 Leanring rate 是炼丹师们从一开始就必学的技能。 从直觉上讲,影响 Learning rate 取值的重要因素是 Batch size。不知你在学习炼丹术时,是否遇到或者思考过入如下问题: 我的 Batch size 增加一倍,Learning rate 该怎 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览