文章预览
随着大模型(LLMs)的发展,AI 写作取得了较大进展。然而,现有的方法大多依赖检索知识增强生成(RAG)和角色扮演等技术,其在信息的深度挖掘方面仍存在不足,较难突破已有知识边界,导致生成的内容缺乏深度和原创性。 针对上述问题,浙大通义联手提出慢思考长文本生成框架 OmniThink,通过模拟人类写作中反思与扩展这一过程来突破知识的边界,基于知识增强使生成的文章更加深入、丰富和原创,该框架可应用于综述写作、新闻报道、报告生成等场景。 论文题目:OmniThink: Expanding Knowledge Boundaries in Machine Writing through Thinking 论文链接:https://arxiv.org/abs/2501.09751 在线Demo: https://modelscope.cn/studios/iic/OmniThink 背景与挑战 文章内容重复 :如图所示,基于 RAG(GPT-4o)的框架主要依赖固定的检索策略,检索得到的内容信息单一,生成文章时可利用的
………………………………