文章预览
点击上方 “ 小白学视觉 ”,选择加" 星标 "或“ 置顶 ” 重磅干货,第一时间送达 什么是梯度下降 梯度下降是机器学习中的常用算法,通过不断迭代计算函数的梯度,判断该点的某一方向和目标之间的距离,最终求得最小的损失函数和相关参数,为建立线性模型提供支持。 梯度下降是一种广泛用于求解线性和非线性模型最优解的迭代算法,它的中心思想在于通过迭代次数的递增,调整使得损失函数最小化的权重。 它的作用是用于优化一个目标函数,如果要最小化一个损失函数,使用的就是梯度下降法,如果要最大化一个效用函数,使用的是梯度上升法。 简而言之: 1. 梯度下降就是用来求某个函数最小值时自变量对应取值 2. 损失函数就是一个自变量为算法的参数,函数值为误差值的函数。所以梯度下降就是找让误差值最小时候算法取的参数。
………………………………