文章预览
本文是中国大学慕课《机器学习》的“集成学习”章节的课后代码。 课程地址: https://www.icourse163.org/course/WZU-1464096179 课程完整代码: https://github.com/fengdu78/WZU-machine-learning-course 代码修改并注释:黄海广,haiguang2000@wzu.edu.cn import warnings warnings.filterwarnings( "ignore" ) import pandas as pd from sklearn.model_selection import train_test_split 生成数据 生成12000行的数据,训练集和测试集按照3:1划分 from sklearn.datasets import make_hastie_10_2 data, target = make_hastie_10_2() X_train, X_test, y_train, y_test = train_test_split(data, target, random_state= 123 ) X_train.shape, X_test.shape ((9000, 10), (3000, 10)) 模型对比 对比六大模型,都使用默认参数 from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemb
………………………………