专栏名称: 数据派THU
本订阅号是“THU数据派”的姊妹账号,致力于传播大数据价值、培养数据思维。
今天看啥  ›  专栏  ›  数据派THU

预训练神经机器翻译研究进展分析

数据派THU  · 公众号  · 大数据  · 2024-08-15 17:00
    

文章预览

来源:专知 本文 约1300字 ,建议阅读 5 分钟 致力于对PTNMT的现状和相关问题进行系统性的整理和分析,从引入PTM的预训练方法、使用策略以及特定任务等角度对PTNMT方法进行详细的分类,并对PTNMT方法解决的问题进行总结,最后对PTNMT的研究进行展望。 神经机器翻译(NMT)模型通常使用双语数据进行监督训练,而构建大规模双语数据集是一个巨大挑战。相比之下,大部分语言的单语数据集较为容易获取。近年来,预训练模型(PTM)能够在海量的单语数据上进行训练,从而得到通用表示知识,来帮助下游任务取得显著的性能提升。目前基于预训练的神经机器翻译(PTNMT)在受限资源数据集上已被广泛验证,但如何高效地在高资源NMT模型中利用PTM仍亟待研究。该文致力于对PTNMT的现状和相关问题进行系统性的整理和分析,从引入PTM的预训练方法、使用策略以及特定任务等角度对 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览