文章预览
Abstract 基于视觉的3D占据预测由于单目视觉在深度估计上的固有局限性而面临显著挑战。本文介绍了CVT-Occ,一种新颖的方法,通过时间上的体素几何对应进行时间融合,以提高3D占据预测的准确性。通过在每个体素的视线方向上采样点并整合这些点的历史帧特征,我们构建了一个代价体积特征图,从而优化当前体积特征以改进预测结果。我们的方法利用了历史观察中的视差线索,并采用数据驱动的方法学习代价体积。通过在Occ3D-Waymo数据集上的严格实验验证了CVT-Occ的有效性,在3D占据预测任务上以最小的额外计算成本超越了最新的方法。 代码获取 :https://github.com/Tsinghua-MARS-Lab/CVT-Occ 欢迎加入自动驾驶实战群 Introduction 基于视觉的3D语义占据预测在3D感知领域迅速发展,推动了其在自动驾驶、机器人和增强现实中的关键应用。该任务旨在通过视觉输
………………………………