文章预览
可控学习(Controllable Learning,CL)作为可信机器学习的关键组成部分,确保学习者能够满足预定义目标,并且能够根据这些目标的变化自适应调整而无需重新训练。 我们提供了CL的正式定义,并讨论了其在信息检索(Information Retrieval,IR)中的应用,因为信息需求通常是复杂且动态的。该调查根据控制者(用户或平台)、可控内容(如检索目标、用户的历史行为、可控的环境适应)、控制的实现方式(如基于规则的方法、帕累托优化、超网络)以及控制的实施位置(如预处理、处理中、后处理方法)对CL进行了分类 。然后,我们识别了CL在在线环境中的训练、评估、任务设置和部署方面面临的挑战。此外,我们概述了CL在理论分析、高效计算、增强大语言模型、应用场景和评估框架在IR中的有前途方向。 https://www.zhuanzhi.ai/paper/675f39d88d6a523e30daabea22bae51d
………………………………