关注图网络、图表示学习,最近顶会顶刊动态以及机器学习基本方法,包括无监督学习、半监督学习、弱监督学习、元学习等
今天看啥  ›  专栏  ›  深度图学习与大模型LLM

NeurIPS 2024 || 结构信息原理指导的高效智能体探索

深度图学习与大模型LLM  · 公众号  ·  · 2024-10-12 10:08
    

文章预览

本文介绍来自北京航空航天大学彭浩老师团队发表在NeurlPS 2024上的一篇文章“Effective Exploration Based on the Structural Information Principles”。 为了解决当前基于传统信息论的探索方法由于忽略状态-动作空间内在结构而导致效率低下的问题,作者提出了一种基于结构信息原理的探索框架,即SI2E。 SI2E通过定义结构互信息,提出一种新的状态动作表征原则,捕捉状态-动作对之间的动态关系,构建最优编码树 。通过分析状态-动作对之间的价值差异,定义策略条件结构熵,构造内在奖励机制,实现对于状态-动作空间更为有效的覆盖。在MiniGrid、MetaWorld和DeepMind Control Suite等测试环境中,SI2E在最终性能与采样效率等方面的表现遥遥领先,最大提升幅度分别达到了37.63%和60.25%。 论文名称:Effective Exploration Based on the Structural Information Principles 论文链接:Effective Explorat ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览