文章预览
点击上方 蓝字 关注我们 微信公众号: OpenCV学堂 投稿作者: 小黄弟 来自:中国电科智慧城市建模仿真与智能技术重点实验室 文字编辑:gloomyfish 特征提取 基于特征的图像配准,具有非常广泛的应用,大致流程可以如下: 经典的特征匹配算法有SIFT、SURF、ORB等,这三种方法在OpenCV里面都已实现。SURF基本就是SIFT的全面升级版,有 SURF基本就不用考虑SIFT,而ORB的强点在于计算时间,以下具体比较: 计算速度:ORB>>SURF>>SIFT(各差一个量级) 旋转鲁棒性:SURF>ORB~SIFT(~表示差不多) 模糊鲁棒性:SURF>ORB~SIFT 尺度变换鲁棒性:SURF>SIFT>ORB(ORB并不具备尺度变换性) 所以结论就是,如果对计算实时性要求非常高,可选用ORB算法,但基本要保证正对拍摄;如果对稳定性要求稍高,可以选择SURF;基本不用SIFT。此外补充一点,自从OpenCV3.x开始,受到SIFT跟SURF专利授权
………………………………