专栏名称: 数据派THU
本订阅号是“THU数据派”的姊妹账号,致力于传播大数据价值、培养数据思维。
今天看啥  ›  专栏  ›  数据派THU

多模态可控扩散模型综述

数据派THU  · 公众号  · 大数据  · 2024-07-26 17:00
    

文章预览

来源:专知 本文 约1500字 ,建议阅读 5 分钟 本综述提供了一个全面的分类框架,总结了扩散模型图像合成中各种形式的控制技术和策略,并探讨了可控生成在不同应用场景中的实践。 研究背景 近年来,人工智能领域经历了跨越式发展,其中生成模型在计算机视觉、自然语言处理和强化学习等多个领域取得了长足进步。生成对抗网络(GANs)、变分自编码器(VAEs)和归一化流等传统方法曾长期占据主导地位,但近期扩散模型(Diffusion Models)的兴起引发了生成模型范式的转变。扩散模型由三个关键组成部分构成:正向过程将数据分布转化为随机噪声;反向过程使用可学习神经网络逐步估计变换核从而逆转正向过程;采样过程利用优化后的网络从随机噪声生成数据。尽管在理论基础、训练稳定性和损失函数简洁性方面具有优势,但扩散模型通常需要更多 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览