专栏名称: 数据STUDIO
点击领取《Python学习手册》,后台回复「福利」获取。『数据STUDIO』专注于数据科学原创文章分享,内容以 Python 为核心语言,涵盖机器学习、数据分析、可视化、MySQL等领域干货知识总结及实战项目。
今天看啥  ›  专栏  ›  数据STUDIO

可视化理解决策树与梯度提升背后的数学原理

数据STUDIO  · 公众号  ·  · 2024-08-05 11:30

文章预览

决策树是一种非参数的监督学习算法,可用于分类和回归。它使用类似树的结构来表示决策及其潜在结果。决策树易于理解和解释,并且可以轻松地进行可视化。但是当决策树模型变得过于复杂时,它不能很好地从训练数据中泛化,会导致过拟合。 梯度提升是一种集成学习模型,在其中结合许多弱学习器从而得到一个强学习器。这些弱学习器是各个决策树,每个学习器都试图关注前一个学习器的错误。与单独的深层决策树相比,梯度提升通常不太容易过拟合。 本文将通过视觉方式解释用于分类和回归问题的决策树的理论基础。我们将看到这个模型是如何工作的,以及为什么它可能会导致过拟合。首先将介绍梯度提升以及它是如何改善单个决策树的性能的。然后将用Python从头实现梯度提升回归器和分类器。最后详细解释梯度提升背后的数学原理。 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览