专栏名称: CV技术指南
长期更新:深度学习、计算机视觉相关技术的总结;图像处理相关知识;最新论文;经典论文;论文综述、tensorflow和pytorch等内容总结。涉及领域 :神经网络模型、transformer模型、目标检测、语义分割、目标跟踪、视频理解等。
今天看啥  ›  专栏  ›  CV技术指南

ECCV'24 | WTConv:小参数大感受野,基于小波变换的新型卷积

CV技术指南  · 公众号  ·  · 2024-09-25 12:40
    

文章预览

前言   近年来,人们尝试增加卷积神经网络(CNN)的卷积核大小,以模拟视觉Transformer(ViTs)自注意力模块的全局感受野。然而,这种方法很快就遇到了上限,并在实现全局感受野之前就达到了饱和。论文证明通过利用小波变换(WT),实际上可以获得非常大的感受野,而不会出现过参数化的情况。例如,对于一个  的感受野,所提出方法中的可训练参数数量仅以  进行对数增长。所提出的层命名为WTConv,可以作为现有架构中的替换,产生有效的多频响应,且能够优雅地随着感受野大小的变化而扩展。论文在ConvNeXt和MobileNetV2架构中展示了WTConv层在图像分类中的有效性,以及作为下游任务的主干网络,并且展示其具有其它属性,如对图像损坏的鲁棒性以及对形状相较于纹理的增强响应。 模型部署交流群: 732145323 。用于模型部署、高性能计算、优 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览