文章预览
向AI转型的程序员都关注了这个号 👇👇👇 机器学习AI算法工程 公众号: datayx 构建深度学习模型时,你必须做出许多看似随意的决定:应该堆叠多少层?每层应该 包含多少个单元或过滤器?激活应该使用 relu 还是其他函数?在某一层之后是否应该使用 BatchNormalization ?应该使用多大的 dropout 比率?还有很多。这些在架构层面的参数叫 作超参数(hyperparameter),以便将其与模型参数区分开来,后者通过反向传播进行训练。 在实践中,经验丰富的机器学习工程师和研究人员会培养出直觉,能够判断上述选择哪些 可行、哪些不可行。也就是说,他们学会了调节超参数的技巧。但是调节超参数并没有正式成 文的规则。如果你想要在某项任务上达到最佳性能,那么就不能满足于一个
………………………………