深度学习、机器学习、大数据技术社区,分享各类算法原理与源码、数据处理、可视化、爬虫、竞赛开源代码等资源。 如需推送广告合作请联系微个人号: hai299014
今天看啥  ›  专栏  ›  机器学习AI算法工程

[自动调参]深度学习模型的超参数自动化调优详解

机器学习AI算法工程  · 公众号  ·  · 2019-01-10 20:21
    

文章预览

向AI转型的程序员都关注了这个号 👇👇👇 机器学习AI算法工程  公众号: datayx 构建深度学习模型时,你必须做出许多看似随意的决定:应该堆叠多少层?每层应该 包含多少个单元或过滤器?激活应该使用 relu 还是其他函数?在某一层之后是否应该使用 BatchNormalization ?应该使用多大的 dropout 比率?还有很多。这些在架构层面的参数叫 作超参数(hyperparameter),以便将其与模型参数区分开来,后者通过反向传播进行训练。 在实践中,经验丰富的机器学习工程师和研究人员会培养出直觉,能够判断上述选择哪些 可行、哪些不可行。也就是说,他们学会了调节超参数的技巧。但是调节超参数并没有正式成 文的规则。如果你想要在某项任务上达到最佳性能,那么就不能满足于一个 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览