文章预览
前言 在总结文章或回答给定段落的问题时,大语言模型可能会产生幻觉,并会根据给定的上下文回答不准确或未经证实的细节,这也被称为情境幻觉。为了解决这个问题,这篇论文的作者提出了一个简单的幻觉检测模型,其输入特征由上下文的注意力权重与新生成的令牌(每个注意头)的比例给出。它被称为回看或基于回看比率的检测器。 Pytorch训练营,花两个星期彻底掌握代码实现 CV各大方向专栏与各个部署框架最全教程整理 CV全栈指导班、基础入门班、论文指导班 全面上线!! 来 源: DeepHub IMBA 仅用于学术分享,若侵权请联系删除 该方法计算为给定上下文的注意力权重与新生成的令牌的比值。在每个时间步,计算每个注意头的回看率,并训练一个 线性分类器 ,称之为Lookback Lens,根据回看率特征检测上下文幻觉,如下图所示 在解码过程中可以
………………………………