文章预览
New Year 2025 学术热点 锂离子电池作为现代能源存储的核心技术,其性能优化与安全性提升面临多尺度、多物理场耦合的复杂挑战。传统实验方法受限于高成本与长周期,而基于物理模型的仿真手段难以全面捕捉电池内部的非线性动力学行为。机器学习凭借其强大的数据挖掘与模式识别能力,为锂离子电池研究提供了革命性的技术路径:在材料层面,通过高通量计算与机器学习结合,可快速筛选电极材料并预测其电化学性能,显著加速新型材料的发现;在电池层面,基于数据驱动的状态估计方法(如SOC、SOH预测)突破了传统模型的精度限制;在系统层面,机器学习算法能够实现对电池组的高效管理与故障预警,为电池全生命周期优化提供科学依据。随着实验数据积累与算法创新,机器学习正推动锂离子电池研究从经验驱动向智能设计范式转变,为下
………………………………