文章预览
导语 噪声通常被认为会影响从时间序列中提取有效的动力学模型,因此传统方法通常需要减轻噪声对学习动力学的影响。另一方面,噪声有驱动稳定态之间随机转移的作用。为了从数据中捕捉和预测噪音诱导的随机转移,在最近发表于 Nature Communications 的一项研究中,来自电子科技大学和北京师范大学的研究者首先尝试应用当下流行的机器学习方法 SINDy、FORCE,但发现即使对于最简单的白噪音双稳态系统这些方法也不准确。因此,作者推广了另一类机器学习模型——储备池计算,并通过重点关注一个控制时间尺度的超参数,设计了可以学习随机转移的新方法。这种方法在一系列例子中展现出良好效果,比如对蛋白质折叠的实验,从仅含有几次状态转移的数据中便能学习到准确的转变动力学。这项研究表明预测噪声诱导的现象还有广泛的探索空间,
………………………………