专栏名称: 计算机视觉研究院
主要由来自于大学的研究生组成的团队,本平台从事机器学习与深度学习领域,主要在人脸检测与识别,多目标检测研究方向。本团队想通过计算机视觉战队平台打造属于自己的品牌,让更多相关领域的人了解本团队,结识更多相关领域的朋友,一起来学习,共同进步!
今天看啥  ›  专栏  ›  计算机视觉研究院

GPT理解的CV:基于Yolov5的半监督目标检测

计算机视觉研究院  · 公众号  ·  · 2024-11-23 12:00
    

文章预览

关注并星标 从此不迷路 计算机视觉研究院 公众号ID | ComputerVisionGzq 学习群 | 扫码在主页获取加入方式 计算机视觉研究院专栏 主要贡献是提出了一种名为“Efficient Teacher”的半监督目标检测算法。与传统的监督学习算法不同,Efficient Teacher利用无标签数据进行训练,并且在训练过程中使用了半监督学习的方法。这种方法可以有效地利用无标签数据,减少过拟合的风险,并且可以提高模型的泛化能力。 注意:本文主要是GPT解读,如有差异请在留言指出! 01 概要 半监督目标检测(SSOD)已经成功地提高了R-CNN系列和无锚检测器的性能。然而,一级基于锚的检测器缺乏生成高质量或灵活伪标签的结构,导致SSOD中存在严重的不一致性问题。在今天分享中,提出了一个高效的教师框架,用于可扩展和有效的基于单阶段锚的SSOD训练,该框架由密集检测器、 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览