专栏名称: 机器学习初学者
号主黄博Github全球排名前90,3.6万Star!致力于为初学者提供学习路线和基础资料,公众号可以当作随身小抄,文章很全,建议收藏!点击菜单可以进入学习!
今天看啥  ›  专栏  ›  机器学习初学者

【机器学习】贝叶斯网络的因果关系检测(Python)

机器学习初学者  · 公众号  ·  · 2024-10-10 12:00

文章预览

在机器学任务中,确定变量间的因果关系(causality)可能是一个具有挑战性的步骤,但它对于建模工作非常重要。本文将总结有关贝叶斯概率(Bayesian probabilistic)因果模型(causal models)的概念,然后提供一个Python实践教程,演示如何使用贝叶斯结构学习来检测因果关系。 1. 背景 在许多领域,如预测、推荐系统、自然语言处理等,使用机器学习技术已成为获取有用观察和进行预测的标准工具。 虽然机器学习技术可以实现良好的性能,但提取与目标变量的因果关系并不直观。换句话说,就是:哪些变量对目标变量有直接的因果影响? 机器学习的一个分支是贝叶斯概率图模型(Bayesian probabilistic graphical models),也称为贝叶斯网络(Bayesian networks, BN),可用于确定这些因果因素。 在我们深入讨论因果模型的技术细节之前,让我们先复习一些术语:包括"相 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览